All functions

dd_dem()

Discrete Choice Predictions (HMNL)

dd_dem_sr()

Discrete Choice Predictions (HMNL with attribute-based screening)

dd_est_hmnl()

Estimate discrete choice model (HMNL)

dd_est_hmnl_screen()

Estimate discrete choice model (HMNL, attribute-based screening (not including price))

dd_LL()

Log-Likelihood for compensatory hmnl model

dd_LL_sr()

Log-Likelihood for screening hmnl model

dummify()

Create dummy variables within a tibble

dummyvar()

Dummy-code a categorical variable

echoice2

echoice2

ec_boxplot_MU()

Generate MU_theta boxplot

ec_boxplot_screen()

Generate Screening probability boxplot

ec_demcurve()

Create demand curves

ec_demcurve_cond_dem()

Create demand-incidence curves

ec_demcurve_inci()

Create demand-incidence curves

ec_dem_aggregate()

Aggregate posterior draws of demand

ec_dem_eval()

Evaluate (hold-out) demand predictions

ec_dem_summarise() ec_dem_summarize()

Summarize posterior draws of demand

ec_draws_MU()

Obtain MU_theta draws

ec_draws_screen()

Obtain Screening probability draws

ec_estimates_MU()

Obtain upper level model estimates

ec_estimates_screen()

Summarize attribute-based screening parameters

ec_estimates_SIGMA()

Obtain posterior mean estimates of upper level covariance

ec_estimates_SIGMA_corr()

Obtain posterior mean estimates of upper level correlations

ec_gen_err_ev1()

Simulate error realization from EV1 distribution

ec_gen_err_normal()

Simulate error realization from Normal distribution

ec_lmd_NR()

Obtain Log Marginal Density from draw objects

ec_lol_tidy1()

Convert "list of lists" format to long "tidy" format

ec_screenprob_sr()

Screening probabilities of choice alternatives

ec_screen_summarise() ec_screen_summarize()

Summarize posterior draws of screening

ec_summarize_attrlvls() ec_summarise_attrlvls()

Summarize attributes and levels

ec_trace_MU()

Generate MU_theta traceplot

ec_trace_screen()

Generate Screening probability traceplots

ec_undummy()

Converts a set of dummy variables into a single categorical variable

ec_undummy_lowhigh()

Convert dummy-coded variables to low/high factor

ec_undummy_lowmediumhigh()

Convert dummy-coded variables to low/medium/high factor

ec_undummy_yesno()

Convert dummy-coded variables to yes/no factor

ec_util_choice_to_long()

Convert a vector of choices to long format

ec_util_dummy_mutualeclusive()

Find mutually exclusive columns

get_attr_lvl()

Obtain attributes and levels from tidy choice data with dummies

`%.%`

Get the attribute of an object

icecream

icecream

icecream_discrete

icecream_discrete

logMargDenNRu()

Log Marginal Density (Newton-Raftery)

pizza

pizza

prep_newprediction()

Match factor levels between two datasets

vd_add_prodid()

Add product id to demand draws

vd_dem_summarise() vd_dem_summarize()

Summarize posterior draws of demand (volumetric models only)

vd_dem_vdm()

Demand Prediction (Volumetric Demand Model)

vd_dem_vdm_screen()

Demand Prediction (Volumetric demand, attribute-based screening)

vd_dem_vdm_ss()

Demand Prediction (Volumetric demand, accounting for set-size variation, EV1 errors)

vd_est_vdm()

Estimate volumetric demand model

vd_est_vdm_screen()

Estimate volumetric demand model with attribute-based conjunctive screening

vd_est_vdm_ss()

Estimate volumetric demand model accounting for set size variation (1st order)

vd_LL_vdm()

Log-Likelihood for compensatory volumetric demand model

vd_LL_vdmss()

Log-Likelihood for volumetric demand model with set-size variation

vd_LL_vdm_screen()

Log-Likelihood for conjunctive-screening volumetric demand model

vd_long_tidy()

Generate tidy choice data with dummies from long-format choice data

vd_prepare()

Prepare choice data for analysis

vd_prepare_nox()

Prepare choice data for analysis (without x being present)

vd_thin_draw()

Thin 'echoice2'-vd draw objects