This utility function prepares tidy choice data for fast MCMC samplers.

vd_prepare(dt, Af = NULL)

Arguments

dt

tidy choice data (columns: id, task, alt, x, p, attributes)

Af

(optional) contains a full design matrix (for attribute-based screening), or, more generally, a design matrix used for attribute-based screening

Value

list containing information for estimation functions

Details

Note: This function is only exported because it makes it easier to tinker with this package. This function re-arranges choice data for fast access in highly-optimized MCMC samplers. It Pre-computes task-wise total expenditures sumpsx and generates indices xfr,xto,lfr,lto for fast data access.

Examples

#minimal data example
dt <- structure(list(id = c(1L, 1L, 1L, 1L, 1L, 1L, 2L, 2L, 2L, 2L, 
                            2L, 2L), 
                     task = c(1L, 1L, 1L, 2L, 2L, 2L, 1L, 1L, 1L, 2L, 2L, 2L), 
                     alt = c(1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L, 1L, 2L, 3L), 
                     x = c(1, 0, 2, 1, 0, 1, 2, 3, 1, 1, 0, 1), 
                     p = c(0, 1, 1, 1, 2, 0, 2, 2, 1, 2, 1, 1), 
                     attr2 = c(1, 0, 1, 0, 0, 0, 0, 0, 1, 1, 0, 0), 
                     attr1 = c(0, 1, 0, 1, 0, 1, 1, 0, 0, 0, 1, 1)), 
                 class = c("tbl_df", "tbl", "data.frame"), row.names = c(NA,-12L))
#run prep function
test <- dt %>% vd_prepare