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Abstract

To improve product planning, supply chain, and pricing decisions for packaged goods,

brand managers must understand drivers of both overall category (‘primary’) brand-

specific (‘secondary’) demand. A key reason for this is that their decision space can

involve adding (or removing) not just one but several products to their current assort-

ment. That is, they must consider not only composition, but assortment size. Although

state-of-the-art Multiple Discrete Continuous Models (MDCM) can explain simultaneous

demand for multiple varieties of products, they can unwittingly encode assumptions that

hinder accurate demand forecasting across assortments of different sizes. Whereas classic

MDCMs impose (in the absence of binding budget constraints) a monotonically increas-

ing relationship between category demand and assortment size, empirical and behavioral

research suggests that smaller assortments can often yield equal or higher sales; this in

turn suggests a potentially positive effect of set size on the baseline utility of the outside

good.

To that end, we develop a new model that retains the brand-level fidelity of MDCMs

but enables a flexible relationship between assortment size and primary demand. Two

large-scale choice experiments in disparate categories (chocolate bars and air fresheners)

demonstrate the proposed model’s ability to predict demand for market-like scenarios,

while analogous MDCMs over-predict primary demand by 40%-80%. Moreover, the pro-

posed model is computationally tractable using standard Bayesian machinery, allowing

scalable inference for real-world category management.

Keywords: Choice Models, Volumetric Demand, Choice-set size, Multiple Discrete

Continuous Models
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1 Introduction

Modeling demand quantities is important for decisions in packaged goods. It is insufficient

to only explain ‘secondary’ demand (i.e., market shares) because consumers may buy

multiple varieties at the same time (Walsh, 1995). Offering more distinct products has

the potential to increase ‘primary’ demand (overall category sales). For example, the

introduction of an entire new line of yogurts might grow overall yogurt sales (i.e., increase

primary demand). It is also possible that the new line primarily takes away sales volume

from other offerings. The outcome depends on consumer budgets, preferences, satiation

and the number of choice alternatives added. Yogurt manufacturers, other package goods

companies or retail stores would like to conduct such policy simulations where multiple

products are added to (or removed from) an assortment (i.e., a choice set).

Managers frequently face decisions that involve the addition or removal of several

choice alternatives. It has been shown that competition from Costco or similar wholesale

clubs may result in reduced assortment sizes in retail stores (Bauner and Wang, 2019).

Manufacturer also need to decide how many varieties to offer. In this paper we assume that

all products of an assortment are considered as viable choice alternatives, and therefore

we do make a distinction between assortment size and choice-set size. Both refer to the

number of alternatives that a consumer can choose from.

Extant demand models are unable to deal with choice-set size variation. In industry,

it is common to use a ‘quantity-then-choice’ approach, where the quantity is independent

of both composition and size of the choice set. This is similar in latent consumption

occasion models (Dubé, 2004), where primary demand is largely unaffected by choice-

set size. We will show that volumetric demand models, in particular models of multiple

discreteness (MDC) (Dubé, 2019; Allenby et al., 2019), are over-identified and biased

towards overestimating demand when assortment size is increased. Dealing with addition

and removal from choice sets is relevant for practitioners (Eagle, 2018), but there is an
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apparent lack of clarity about the implications of choice-set size variation. This paper

fills this void in the choice modeling literature and provides researchers with a tool for

demand modeling when choice-set size varies.

Behavioral research suggests that set size variation influences decision-making pro-

cesses (Meissner et al., 2019) and purchase probabilities (Scheibehenne et al., 2010). It

has been suggested that larger assortments may result in less purchases (Chernev et al.,

2015). For instance, Dhar (1997) find that larger assortments may lead to deferral of

choice. Schwartz (2016) suggests that ‘more is less’. Several explanations have been

discussed in the literature, including changes in expectation regarding the inside goods

(Diehl and Poynor, 2010), differences in motivation (Iyengar and Lepper, 2000) or search

costs (Kuksov and Villas-Boas, 2010). Feinberg et al. (2016) find that participants in

their study are less satisfied with choices from larger choice sets. Studying more versions

of a choice experiment with a wider range of choice alternatives, Herzenstein et al. (2019)

find an inverted U-shaped relationship between the number of choice alternatives and

total allocation to inside options from a given budget. Previous research thus suggests

the existence of (at least) two competing effects from increases in choice-set size: 1) A

positive effect on demand based on providing more ‘variety’ and 2) a negative effect on

demand. Many possible explanations for a negative effect on demand (or, conversely, a

positive effect on demand for ‘outside good’) have been suggested.

Previous empirical studies of category reductions have shown mixed results, i.e. de-

creases and increases in sales in response to assortment size reductions (Boatwright and

Nunes, 2001; Sloot et al., 2006; Borle et al., 2005). These mixed outcomes cannot be

explained using extant volumetric demand models.

While extant volumetric demand models based on economic theory (Kim et al., 2002;

Dubé, 2019; Allenby et al., 2017) are able to explain and predict demand quantities,

they are not designed to handle set size variation. Once set size variation is present,

their parameters are over-identified, and they are unable to explain increasing demand
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for outside good in response to set size increases.

To understand why, we need to review how these multiple discrete-continuous models

(MDCMs) work. They allow for ‘corner solutions’ (products that are not purchased) and

multiple ‘interior solutions’ (products that are bought, where the purchase quantity is

continuous). Multiple interior solutions are possible because it assumed that there are

diminishing marginal utilities to all goods. Consuming only the good with the highest

baseline marginal utility might not be utility-optimal, since the marginal increase in utility

decreases. Instead, consumers may choose to buy several different goods at the same time.

When several additional product varieties are added to the choice-set, more products can

be purchased at a given marginal rate of utility, resulting in increased overall demand for

inside goods. It is therefore built into these multiple discrete-continuous models that pri-

mary demand is monotonically increasing with choice-set size. The relationship between

set size and primary demand is governed by parameters already identified in the absence

of set size variation. This means that these models are over-identified when choice-set size

varies. These models are unable to explain negative effects of assortment size on primary

demand.

We propose a parametric approach to incorporating choice-set size into volumetric de-

mand models. The parameterization captures negative effects of choice-set size on inside

good utilities (or positive effects on outside good utility). Apart from the behavioral rea-

soning for such effects, we believe there is a more simple reason that motivates a ‘negative’

set size effect. The maximum attainable utility from a product category increases when

additional choice alternatives are added. In other words, the category is more valuable in

terms of utils. Money that is allocated towards the category is thus also more valuable.

Volumetric demand models define money that is dedicated to a category as the ‘budget’.

This implies that unspent budget (outside good) is also more valuable. In this paper,

we remain agnostic with respect to the true process behind negative set size effects. Our

parameterization can only described the sum of positive effects of set size on outside good
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utility. We believe our approach would be helpful in further studying set size effects, but

an integration of the vast behavioral literature and economic choice modeling literature

is beyond the scope of this paper. Our model is also helpful for applying data fusion

with volumetric demand models, because set sizes usually vary significantly between data

from choice experiments and transaction histories. Failing to account for set size varia-

tion is likely going to result in poor-fitting models or worse, coming up with speculative

explanations for discrepancies between the data sources involved.

We demonstrate the performance of our model using two empirical applications: Vol-

umetric conjoint studies of chocolate bars in Germany and non-electric air fresheners in

the US. We can show that parameters governing secondary demand (‘part-worths’) are

largely unaffected by set size variation, however, ignoring set size variation leads to dra-

matic over-prediction of primary demand. Extant models are off by as much as 80% in

our first study and 40% in our second study. We validate our model in different ways:

Using self-reported ‘last purchase’ quantities and aggregate demand data (first study) and

a virtual shelf task (second study).

The remainder of this paper is organized as follows: In the next section we introduce

the economic model and statistical specification. Then, we describe our two empirical

applications and results. We then discuss findings and illustrate consequences for policy

simulations. The paper concludes with a discussion of implications and applications.

2 Model Development

In this Section, we first review an extant volumetric demand model and how it is over-

identified in the presence of set size variation. We then develop our proposed model which

incorporates a parameterization of set size. We describe the estimation procedure and

how to generate predictions. Finally, we review related challenges for volumetric demand

models.
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2.1 Volumetric Demand Model

A common approach to modeling volumetric demand are Multiple Discrete Continuous

Models (MDCMs). For an overview and the economic background of these models, see

Dubé (2019). MDCMs can explain simultaneous demand for multiple distinct products.

For each interior solution (i.e. each product that is bought), demand quantities are

assumed to be continuous. This allows developing models based on the Karush-Kuhn-

Tucker conditions which helps simplify estimation, particularly in higher dimensions. This

assumption is unproblematic in many situations (Lee and Allenby, 2014), especially when

bundling does not play a major role in category.

Following a simple direct utility specification with non-linear inside and outside goods,

we assume that decision makers maximize utility u (x, z) subject to a budget constraint

(Allenby et al., 2017). The utility maximization problem for a single choice occasion (i.e.,

a single choice task or shopping trip) can be expressed as:

Max u (x, z) =
N∑
j=1

ψj
γ

ln (γxj + 1) + ψz ln (z) s.t. p′x + z ≤ E (1)

Here, xj is the purchased quantity of good j, and ψj represents the baseline preference for

that good j. The rate of satiation of inside goods is controlled by γ, and pj is the price of a

unit of good j. The outside good z represents unspent money that the decision maker has

been willing to allocate towards the focal category, but eventually did not end up spending

on inside goods available in the choice set. We assume that there are diminishing returns

to unspent money, and therefore use a nonlinear specification of z. This allows estimating

the budgetary allotment E, which is identified through the functional form of the utility

function.

Baseline marginal utility of good j is defined as follows, assuming multiplicative, in-
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dependent error terms for each of the inside goods:

ψj = exp (ajβ + εj) (2)

where β is the vector of ‘part-worths’ and aj is the design vector for alternative j, and εj

is a random term. aj can be specified using dummy coding, in which case the first element

of β, β0, serves as an intercept capturing the baseline marginal utility of an inside good

vs the outside good. Alternatively, effects coding can be used.

The corresponding likelihood function can be developed by exploiting the Karush-

Kuhn-Tucker (KKT) conditions. The KKT conditions are derived by first forming the

auxiliary function using Lagrangian multipliers:

Max L = u(xt, zt, ) + λ

{
E −

J∑
j=1

pjtxjt − zt

}
(3)

Associating first-order conditions with observed demand yields:

ujt = pjt · uzt if xjt > 0 (4)

ujt < pjt · uzt if xjt = 0 (5)

where

uj =
∂u (xt, z)

∂xj
=

exp (ajβ + εj)

γxj + 1
(6)

uz =
∂u (x, z)

∂z
=
ψz
z

(7)

Taking logarithms of 4 and 5, we have:

εj = gj if xj > 0 (8)

εj < gj if xj = 0 (9)
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where

gj = −ajβ + ln (pj) + ln (γxj + 1)− ln (z) + ln (ψz) (10)

We assume that error terms are distributed i.i.d. Extreme Value:

ε ∼ EV(0, σ)

For the purpose of identification, and without loss of generality, it is common to constrain

ψz = 1, which reduces the dimensionality of the system of equations defined by the KKT

conditions by one. This approach, along with other consideration of identification, is

described in more detail by Howell et al. (2016).

The likelihood of the model parameters is proportional to the probability of observing

demand for R of N goods, for which there exists a closed-form expression:

Pr(x) = Pr(xn1 > 0, xn2 = 0, n1 = 1, . . . , R, n2,t = R + 1, . . . , N)

= |JR|
∫ gN

−∞
· · ·
∫ gR+1

−∞
f(g1, . . . , gR, εR+1, . . . , εN) dεR+1, . . . , dεN

= |JR|

{
R∏
j=1

exp(−gj/σ)

σ

}
exp

{
−

N∑
i=1

exp(−gi/σ)

}
(11)

Contributions to the likelihood take the form of density and mass contributions, corre-

sponding to the respective KKT condition. Transforming from random-utility error (ε)

to the likelihood of the observed data (x), we need to consider the Jacobian |JR|:

|JR| =
R∏
j=1

(
γ

γxj + 1

){ R∑
j=1

γxj + 1

γ
· pj
z

+ 1

}
(12)

The error scale parameter σ captures the price sensitivity of respondents.

The model yields estimates for E based on the assumption of nonlinear outside good

utility and variation in inside good expenditures across tasks. While the lower bound for
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the budget estimate is given by the ‘maximum ever spent’ across all choice occasions, vari-

ation in expenditures among choice tasks contributes to estimates that a larger than the

lower bound. This assumes that each all choice occasions are comparable, i.e. preferences,

satiation and budget do not change between occasions.

Relative values of the ‘part-worth’ parameters β explain patterns of secondary demand,

while the location or intercept of β (i.e., β0), along with other parameters, relates to

primary demand. Larger values of γ mean higher rates of satiation. This may reveal itself

by demand patterns that are dispersed over a more distinct products. Everything else

being equal, it would also lead to stronger increases in primary demand in response to set

size increases.

2.2 Incorporating set size variation

The specification described in the previous Section (unwittingly) implies that, unless the

budget constraint is binding, (1) primary demand is increasing in choice-set size and (2)

the strength of this relationship is determined by parameters which are identified in the

absence of set size variation. In other words, once set size variation introduced, the model

is over-identified. While Ackerberg and Rysman (2005) describe over-identification in

a discrete choice model with set size variation, we are not aware of a discussion of the

consequences of over-identification for volumetric demand models.

Empirical and behavioral research suggests that the relationship between set size and

primary demand can take on different directions and strengths. Major assortment reduc-

tions have been found to have positive, negative or no effect on overall sales (Boatwright

and Nunes, 2001; Borle et al., 2005). In some cases, assortment reductions have resulted

in (sometimes temporary) reductions in overall sales, in other cases overall sales remained

largely unaffected. Therefore, we believe that over-identified MDCMs are potentially

too restrictive if there is significant variation in set size. Our proposed model is able to

describe such patterns in demand data by introducing an additional set size effect.
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We re-write the maximization problem of Equation 1 to include a task-specific Nt:

Max u (x, z) =
Nt∑
j=1

ψj
γ

ln (γxj + 1) + ψz ln (z) s.t. p′x + z ≤ E (13)

Given variation in Nt, it is possible to identify a parameter in place of ψz if it is a

function of Nt. Allowing the model to represent increasing appeal of the outside good

(or decreasing returns from all inside goods) is consistent with previous empirical and

behavioral research (constant or even increasing demand in response to assortment size

reductions). While different combinations of β0, γ, E can yield stronger relationships

between set size and primary demand, the over-identified model is unable to represent

weaker (or negative) relationships. This also means our parameterization of ψz will need

to be constrained to only represent larger relative utility of the outside good.

A simple specification is shown in Equation 14, where outside good baseline marginal

utility ψz is a function of Nt and a set size parameter ξ:

ψz = f (Nt; ξ) = exp (0 + ln(f (Nt; ξ))) (14)

where ξ ≥ 0

Here, ξ must be constrained to be positive, because stronger relationships between set

size and primary demand can be represented by corresponding combinations of β0, γ, E

already. This constraint will ensure identification.

Depending on the amount of information available, f (Nt; ξ) can be specified in more

or less flexible ways, or even be estimated non-parametrically. Unless ‘jumps’ in demand

are expected at specific set sizes, a first or second order polynomial parameterization

should be flexible enough. However, higher-order specifications can be tested. This would

be advisable if variance in demand and set size is expected to be large.

In our first empirical application, we only observe two discrete sizes of the choice set.
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In this case, a simple linear specification can be fit:

f (Nt; ξ1) = ξ1Nt + 1 (15)

This parameterization implies that the marginal utility of the outside good is increasing in

Nt. Relatively speaking, the utility of each inside good is decreasing in Nt. The resulting

model nests the extant volumetric demand model from the previous section 2.1 when

ξ = 0. Larger values of ξ mean that consumers do attach higher relative marginal utility

to the outside good as Nt increases.

In our second empirical application, we observe three different choice-set sizes. In that

case, we can also fit a 2nd order polynomial:

f (Nt; ξ = {ξ1, ξ2}) = ξ1Nt + ξ2N
2
t + 1 (16)

The appropriate order of the polynomial can be identified by comparing models based on

the log-marginal likelihood.

While choice-set size variation has not been discussed in the volumetric choice liter-

ature, this has been studied for discrete choice models. Ackerberg and Rysman (2005)

propose a discrete choice model that adjusts for variation in assortment size. They assume

that the error term represents unobservable characteristics of choice alternatives. A nested

Logit model thus implies that each additional product adds one additional dimension to

the unobserved characteristic space. Our proposed model is different in that is explaining

choice quantities instead of discrete choices and it is not motivated by ‘crowding‘ in the

error term, but the relative value of the outside good.

To demonstrate the effects of ignoring set size variation, we first re-arrange the model

specification while keeping it likelihood-equivalent. Volumetric choices are determined

only by relative utilities. Therefore, we can apply the adjustment to inside good marginal
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utilities, while maintaining the usual constraint of ψz = 1:

ψkt = exp (akβ + ε− f (N ; ξ)) (17)

Here, we can see that the mean or location of the ‘part-worth’ vector (β) (or its intercept

term β0, if dummy coding is used) is a function of Nt if ξ > 0. Thus if the ‘true’ ξ > 0,

the extant volumetric demand model will result in poor fit to data with choice-set size

variation, because the location of β estimates will be inaccurate. This will also result

in inaccurate predictions for counterfactual scenarios where Nt takes on different values.

Based on this, we conjecture that for two (mostly) identical choice experiments, the one

that involves larger choice-set sizes will result in estimates of βh0 that are smaller. We

can also expect demand predictions for scenarios with more than k alternatives based on

data with k choice alternative to be biased towards over-prediction.

Our proposed model specification (Equations 14, 15) may result in an inverted U-shape

relationship between assortment size and primary demand. Initially, primary demand

increases with increasing assortment size, because consumers are able to buy varieties that

involve more unique products or more demand for inside goods overall. Here, larger values

of ξ attenuate the relationship between set size and primary demand. As more alternatives

are added to the set, and inflection point is reached and primary demand might actually

decrease. Here larger values of ξ imply faster decreasing primary demand. Whether or not

we end up observing decreasing demand in response to increasing assortment size depends

on how many alternatives enter the consideration set. This shape is consistent with results

described by Herzenstein et al. (2019), who find the same pattern for contributions to for-

profit crowdfunding campaigns. It is also consistent with mixed results in empirical studies

of retail assortments.

To further illustrate the influence of ξ on primary demand, we use a simple simulation

exercise. To keep it simple, we use a linear specification of the set size adjustment.

We compute expected demand for a single decision maker, varying Nt and ξ, while all
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choice alternatives have the same deterministic utility (ajβ = .25 ∀j ∈ [1, ..., Nt]) and

prices (pj = 1), and we keep constant the rate of satiation (γ = .75), budget (E = 15),

error scale (σ = .25) and prices (pj = 1). The resulting primary demand curves are

shown in Figure 1. ξ = 0 corresponds to the simple volumetric demand model, while

larger values of ξ show smaller increases in primary demand, or even decreasing primary

demand. Comparing the different demand curves, we see that significant variation in the

number of alternatives may be necessary to notice the relationship. An increase from 8

to 12 choice alternatives may only have a small impact on primary demand. However,

once we consider demand in much larger assortments with 20 or more alternatives, there

are considerable differences in predicted primary demand. Assuming identical baseline

marginal utilities for all alternatives in this simulation, we can isolate the effect of variety

on primary demand. We can see that larger values of ξ are able to offset the variety effect.

Figure 1: Number of alternatives, ξ, and primary demand (simulation)
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In this paper we assume (for simplicity) that all choice alternatives available are also

being considered, i.e. choice set size is controlled only by the vendor.

Exploring the processes behind the adjustment of marginal utility of the outside good

is an interesting area for future research and is beyond the scope of this paper because
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we are not able to discern and isolate individual processes.

The model likelihood is straightforward to derive. Applying the parameterization of

ψz to the utility function in Equation 13, we can rewrite it as follows:

u (xt, zt) =
Nt∑
j=1

ψjt
γ

ln (γxjt + 1) + (ξNt + 1) ln (zt) (18)

Here, the marginal utility of the outside good is:

uzt =
∂u (xt, zt)

∂zt
=
ξNt + 1

zt
(19)

This leads to an additional term in the expression for gkt, while the Jacobian remains

unchanged. The likelihood otherwise be computed similar to equation 11, with mass and

density contributions corresponding to the new function gkt:

gkt = −aktβ + ln (ξNt + 1) + ln (pkt) + ln (γxkt + 1)− ln (zt) (20)

It is important to remember that ξ is only identified when there is variation in Nt.

The source of variation in Nt can be experimental (e.g., in a choice experiment) or natural

(when a store changes assortments over time in purchase transaction or similar ‘revealed

preference’ data).

The proposed model is based on a relatively simple utility specification (i.e., Equation

18). However, the need for including an adjustment term to the outside good marginal

utility is not specific to that particular utility specification. Generally, volumetric demand

models require some non-linear utility specification. This is necessary to describe simul-

taneous demand for varieties. Moreover, identification constraints are required, resulting

in over-identification issues once choice-set size variation is introduced.

Based on Equation 17, we would expect that omitting our proposed set size adjust-

ment, there would be significant differences in the intercept of the ‘part worth’ vector βh.

Intercept terms are likely going to be smaller given larger choice-sets.
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2.3 Heterogeneity and Estimation

θh = {βh, ln γh, lnEh, lnσh, ln ξh} is subject/respondent h’s vector of parameters of length

M governing the individual-level demand model. We assume a simple Normal model for

heterogeneity. It is straightforward to replace it with a Multivariate Regression or Mixture

of Normals model of heterogeneity if deemed appropriate.

θh ∼ Normal(θ̄,Σ) (21)

Hyperparameters are assumed to be weakly informative, i.e. θ̄ ∼ N(0, 100IM), Σ ∼

IW(M + 4, (M + 4)IM). Estimation of this model is easy using standard Monte Carlo

Markov Chain methods (Rossi et al., 2005). The Metropolis-Hastings algorithm (Metropo-

lis et al., 1953; Hastings, 1970) is used for sampling θh, and Gibbs-sampling steps are used

for sampling the remaining parameters.

2.4 Demand predictions

Demand (xht) of subject h at time t is a function of parameters of the demand model

(θh), a realization of the vector of error terms (εht), characteristics of the available choice

set (At = {at1...atJ}), and prices (pt). We call the demand function D. Given the

configuration of available products (i.e., At and corresponding prices pt) it returns utility-

maximizing demand for one realization of model parameters θh and one realization of the

error term εht:

xht = D (θh, εht|At,pt) (22)

There is no closed form solution for D. However, D can be computed using an iterative

procedure that at worst takes Rt iterations (see Appendix A). Finally, expected demand is

obtained by integrating out the error term and posterior distribution of model parameters

θh.

E (xht) =

∫
θh

∫
εht

D (θh, εht|At,pt)p(εht)dεhtdθh (23)
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Numeric integration is computationally cheap, because draws of θ have already been

produced in the process of estimating the model, and D can easily be computed. Posterior

distributions of demand can be produced for groups of consumers.

2.5 Related modeling challenge

We have argued that in the presence of choice-set size variation, volumetric demand

models should include a set size parametrization . We believe that it is intuitive to

account for the change in choice context induced by different choice set sizes and to

overcome an overidentified model. The resulting inverted U-shaped relationship between

assortment size and primary demand is consistent with previous findings. In this section,

we are discussion other model extensions that have been discussed in the context of choice

models. However, we believe that the set size model is orthogonal to all of these extensions.

2.5.1 Multiple constraints

Satomura et al. (2011) propose a volumetric demand model that accounts for multiple

constraints. In their application, they add a space constraint that prevents consumers

from expanding their level of consumption beyond the capacity of their storage space.

Binding space constraints can explain a ‘cap‘ on the curve describing the choice-set size /

primary demand relationship. However, it cannot explain an inverted U-shape relationship

between set size and primary demand. Moreover, we do not see expenditures across choice

tasks ‘pile up‘ close to the budget constraint.

2.5.2 Correlated errors

As a choice set is populated with more choice alternatives, consumers may perceive more

choice alternatives as ‘similar’. Researchers may argue that error terms of ‘similar‘ choice

alternatives should be correlated. Given the same choice-set size, error correlation may

lead to lower levels of primary demand. Dotson et al. (2018) propose a model that allows
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for correlated error terms in a discrete choice model, relaxing the independence of irrel-

evant alternatives (IIA) assumption, and allowing for higher rates of substitution among

similar products. They parameterize the covariance structure as a function of similarity,

where similarity is informed by similarity in overall (deterministic) utility. Conceptually,

this could also be applied to volumetric demand models. However, estimating a (dis-

crete/continuous) volumetric demand model with correlated errors is challenging, since

the likelihood comprises mass and density contributions. Fortunately, it is straightforward

to simulate volumetric demand given correlated errors.

We redo the simulation illustrated in Figure 1 for different levels of correlation (0. 0.45,

.9) between the error terms. We generate error terms from a Multivariate Normal dis-

tribution (instead of Extreme Value), and then simulate demand following the algorithm

described in Appendix A. Results are shown in Figure 2. We can see that even large levels

of correlation between error terms (.9) only result in minor changes in primary demand

relative to no error correlation (keeping all other parameters equal), while different values

of ξ can explain different patterns of set-size-primary-demand relationships. Moreover,

the proposed model is able to describe an inverted U-shaped relationship between assort-

ment size and primary demand, while error correlation is only able to explain minor shifts

of the assortment-size-primary-demand curve.
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Figure 2: Set size and primary demand given different levels of error correlation and ξ
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3 Empirical application

We use data from two studies to investigate the properties of our proposed demand model.

Both datasets are collected from commercials panels. In both studies, we use experimental

choice-set size variation which can help identify the proposed set size parameter(s). We

use the estimated models to extrapolate from the relative small-N experimental world to

market-like large-N scenarios. The following models will be applied:

� vd - an extant specification of a volumetric demand model (see Section 2.1)

� vd-ss(o) - our proposed model with set-size adjustment (where o is the order of the

polynomial, see Section 2.2)

To identify respondents with unrealistic or incoherent preferences, we first estimate

simple volumetric demand models (vd) for each set-size, obtain individual log-likelihood

values and remove about the 10% of worst-fitting respondents. We also remove respon-

dents who never choose a single choice alternative.

The joint posterior distribution of the model parameters are obtained using the MCMC

method for hierarchical Bayes models. We estimated all models using 500,000 iterations

and used the last 100,000 draws to obtain parameter estimates.
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3.1 Chocolate bars

Our first application is based on a volumetric choice experiment from a commercial panel

in Germany. The design of our choice experiment follows common studies in the packaged

goods industry, except for choice-set size variation. Chocolate bars are very popular in

Germany, where people consume an average of about 9kg of chocolate products every

year, half of which is traditional chocolate bars (Statista, 2018b). In order to test how

accurately competing demand models predict market-level demand in a ‘base case’ sce-

nario (i.e., current market demand at current market offerings), the study is designed to

reproduce a set of typical market offerings available in supermarkets across Germany in

2018. Therefore, no new flavors or flavor combinations were added to the study.

Table 1: Attributes and Levels (Chocolate bars)

Attributes Levels

Brand Alpia, Feodora, Kinder, Lindt, Merci, Milka, Nestle, Ritter, Sarotti,
Schogetten, Suchard, Tobler, Trumpf, Ferrero/Yogurette

Chocolate Milk, Dark, Black, White
Nut Nut, No Nut
Fruit Fruit, Berry, Grape, No Fruit
Filling None, Yogurt, Choc Chunk, Coffee, Cookie, Black and White, Crisp,

Nougat, Caramel, Milk Creme, Special, Marzipan

We characterized chocolate bars in terms of five key attributes: Brand name, Chocolate

type, Nut content, Fruit or Berry content and Filling. An overview of attributes and levels

in shown in Table 1. Using those attributes and levels we can map between product space

(with about 100 unique products accounting for 80% of sales volume) and the lower-

dimensional attribute space. Most bars are offered in 100g pack sizes, while some brands

are traditionally associated with 80g or 120g bars. To account for this, we scale volumetric

demand accordingly, i.e. 1 unit demand for a 120g bar is represented as demand for 1.2

units. Respondents were shown a glossary of 117 common product configurations before

being presented with the choice tasks. The glossary is designed to help respondents

understand the attributes used in the choice experiment, which is common in studied

18



involving large numbers of attributes or levels (Rao, 2013).

Figures 3, 4 show example choice tasks with 8 and 18 alternatives, respectively. Re-

spondents were presented with a picture of the product and a description of the attribute

levels associated with that particular product. Alternatives were arranged by manufac-

turer if multiple alternatives from the same manufacturer were included in a choice set.

This resembles the typical shopping situation in a store, where products are arranged in

the same way. Respondents are asked to type the number of bars they would buy from

each variety. They are reminded that it is possible to not buy any of the offerings, in

which case they need to type in ‘0’ for any of the alternatives. The total number of bars

chosen on a given task is shown on the bottom right corner of the screen.

Figure 3: Example choice task - 8 alternatives

In order to analyze the effect of choice-set size on demand, we created different versions

of the volumetric choice experiment. Respondents were randomly assigned to one of the

different versions of the conjoint experiment. Table 2 provides an overview of the different

versions. Versions 1 and 2 are used to analyze commonalities and differences in demand

model estimates between small and large set size scenarios. Our proposed methods is

based on version 3, where the size of the choice set is changed across choice tasks. The
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Figure 4: Example choice task - 18 alternatives

Table 2: Experimental set-up (Chocolate bars)

Number of alternatives during sample

Version first 8 tasks second 8 tasks size

1 8 8 274
2 18 18 225
3 8 18 249

number of alternatives is increased from 8 to 18 after 8 tasks, providing variation needed

to identify ξ, which is the effect of the choice-set size on marginal utility of a single

alternative. In each version, respondents were presented with 16 choice tasks. In version

1 and version 2, 8 or 18 alternatives are presented across all 16 tasks, respectively.

In the remainder of this section, we show descriptive statistics, a comparison of model

estimates based on version 1 and 2 of the choice experiment, and finally we compare

marketplace predictions based on the proposed and competing models. Marketplace pre-

dictions are based on a typical offering that would be available at a typical German
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Table 3: Descriptive Statistics (Chocolate bars)

Version Number of Units Varieties $ spent Maximum
Alternatives per task per task per task spent

mean sd mean sd mean sd mean sd

1 (8 alternatives) 8 1.41 1.35 1.08 0.86 1.63 1.65 3.93 2.30
3 (8-then-18) 8 1.31 1.25 1.05 0.93 1.53 1.55 3.20 1.91

2 (18 alternatives) 18 2.16 2.09 1.51 1.19 2.49 2.61 5.48 4.06
3 (8-then-18) 18 1.95 2.08 1.54 1.61 2.29 2.56 4.44 3.27

supermarket. This ‘base case’ scenario consists of 117 product and corresponding typical

prices, which are mapped to the attribute space in our study.

3.1.1 Descriptive Analysis

Descriptive statistics of demand are summarized in Table 3. Summaries are broken down

by the number of alternatives shown and choice experiment version (8 all the way, 18

all the way and 8-then-18 alternatives). Respondents choose larger quantities (around

2 instead of 1.4) and more varieties (around 1.5 instead of 1.1) when offered a larger

assortment. Therefore, they overall spend more when a larger assortments are offered.

Differences between versions are small, as respondents appear to quickly adjust to the

size of the choice set being shown.

Choice-set size variation may increase burden on respondents. Therefore, we investi-

gated response times. Their median response times are shown in figure 5. We see that

(1) response times are longer when more alternatives are presented and (2) response time

decrease over time, particularly over the first one to three tasks. After the first eight

choice tasks all respondents saw an intermission screen. In version 3, they were told that

the number of choice alternatives per task would increase. In version 1 and 2, the were

only told that there would be 8 more choice tasks. The intermission screen lead to higher

response times at task 9. In version 3, going from 8 to 18 alternatives, that increase in

response time is larger. This is not surprising, as respondents may have needed some
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extra time to get used to the new look of the choice screen. However, they appear to

adapt quickly. After just one task, their response times converge to those of respondents

who have seen 18 alternatives throughout the entire experiment (version 2). This find-

ing appears to be consistent with the notion of quick adaptivity to changes in set sizes

(Meissner et al., 2019).

Figure 5: Median response times (Chocolate bars)
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To investigate if space constraints play a significant role, we take a closer look at

data from version 2 (18 choice alternative throughout the experiment). We compute the

following proportion for each respondent: number of choice tasks in which the maximum

observed quantity was chosen divided by number of choice tasks in which at least one

product was chosen. Large shares could indicate a binding space constraint. Figure 6

shows a histogram of this proportion. We use color-coding to indicate maximum quantities

chosen. Of those respondents who always choose their respective maximum quantity,

that quantity is 1. Very few respondents choose a maximum quantity of between 2-5 for a

majority of choice tasks. It is hard to believe that a space constraint is binding that would

only allow for a single bar of chocolate. Therefore, we believe that space constraints are

not a major concern in this experiment.
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Figure 6: Proportion of tasks where primary demand = max(primary demand)

0

50

100

150

0.00 0.25 0.50 0.75 1.00

Share of choice tasks

Max quantity

(0,1]

(1,5]

(5,Inf]

3.1.2 Estimating models on data without set size variation

In order to assess the effect of choice set size on estimated parameters of the demand

model, we fit the standard volumetric demand model presented in section 2.1 to version

1 and 2 data from our VCE. The scatterplot in Figure 7 shows that estimates of θ̄ based

on choice data with 8 and 18 alternatives.

Most parameters are estimated consistently, regardless of choice-set size. There are

three exceptions: Estimates based on 18 alternatives include a larger budgetary allotment

(exp(2.35) vs exp(1.75)), a smaller intercept (−3.18 vs −2.48) and a smaller error scale

(exp−1.01 vs −0.76). The effect on the budgetary allotment E is consistent with the

descriptive summaries: respondents choose inside options more frequently and in higher

quantities when more variety is offered. Since the lower bound of budget estimates is

given by the maximum spent by a respondent across choice tasks, it is not surprising

that budget estimates turn out larger in the 18 alternative condition. The intercept of

the baseline marginal utility (β0) of inside good is smaller in the 18 alternative condition.

This is consistent with our conjecture in section 2.2: All else equal, larger choice sets
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Figure 7: Comparing θ̄ estimated from 8 vs 18 alternatives (Chocolate bars)
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imply smaller β0 if set size effects exist. The difference in error scale may in part be

explained by the more informative nature of higher-dimensional choice data.

3.1.3 Estimating models on data with set size variation

In version 3 of the VCE, respondents chose among 8 alternatives for the first 8 tasks, and

then continued to choose among 18 alternatives for the last 8 choice tasks. We randomly

select 1 choice task per respondent for out-of-sample fit statistic computation and estimate

the proposed and benchmark models (vd-ss(1) and vd).

Table 4: Comparing Fit (Chocolate bars)

In-sample Out of sample

Model LMD MSE MAE

vd -12,423.66 0.445 0.183
vd-ss(1) -12,346.92 0.455 0.182

Fit statistics are presented in Table 4. It shows the log marginal density of the data
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(LMD) for in-sample fit, and the mean squared error (MSE) and mean absolute error

(MAE) for out-of-sample fit. They are computed as follows:

MSE(x, x̂) =

∑n
i=1 (x̂i − xi)

2

n
(24)

MAE(x, x̂) =

∑n
i=1 |x̂i − xi|

n
(25)

Out-of-sample fit statistics are based on predictions of demand for the hold-out tasks.

These predictions are computed via numerical integration. We take 10,000 thinned draws

from the individual-level posterior distribution of parameters, generate realizations for

the error terms and compute demand conditional on both (see section 2.4). By averag-

ing across the resulting conditional demands, we are integrating over the distribution of

parameters and errors.

Comparing model fits in Table 4, two observations stand out: Firstly, there are no

dramatic differences in model fit between the models. This is to be expected, because

choice-set size variation is limited to 8 and 18 alternatives. A much better test of external

validity is based on the ability of the model to predict actual purchase behavior, beyond

the respective choice experiment. We do this in Section 3.1.4.

Estimates of θ̄ are summarized in Table 5. Overall, most estimated parameters are

the same except for the introduction of ξ and a larger β0 estimate in the proposed model.

The shift in β0 is to be expected, as laid out in Section 2.2.

3.1.4 Demand predictions for market scenarios

We use a ‘base case’ scenario that mimics an assortment available at a typical German

supermarket in 2018. It consists of 117 products, including their configuration and typical

price. This scenario provides a realistic approximation of actual choice sets experienced

by out respondents when shopping in a grocery store. We use this scenario to conduct

two assessments of the estimated demand models: (1) The ability to reproduce self-
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Table 5: Estimates (Chocolate bars)

vd vd-ss(1)

β0 -2.81 (0.12) -2.51 (0.13)
Brand (reference: Milka)

Alpia -0.89 (0.11) -0.89 (0.12)
Feodora -2.16 (0.19) -2.24 (0.22)
Kinder -0.37 (0.20) -0.30 (0.18)
Lindt -0.30 (0.14) -0.30 (0.15)
Merci -0.65 (0.12) -0.66 (0.13)
Nestle -0.83 (0.18) -0.85 (0.21)
Ritter -0.08 (0.09) -0.08 (0.09)
Sarotti -0.96 (0.12) -0.99 (0.14)
Schogetten -0.61 (0.09) -0.64 (0.09)
Suchard -1.07 (0.22) -1.11 (0.21)
Tobler -0.41 (0.12) -0.38 (0.12)
Trumpf -0.68 (0.17) -0.70 (0.18)
FerreroYogu -0.23 (0.13) -0.26 (0.13)

Choc (reference: milk)
dark -0.46 (0.11) -0.48 (0.11)
black 0.24 (0.13) 0.31 (0.14)
white -0.55 (0.10) -0.56 (0.11)

Filling (reference: none)
yog -0.45 (0.08) -0.46 (0.08)
chocchunk -0.38 (0.09) -0.37 (0.08)
coffee -0.29 (0.10) -0.28 (0.12)
cookie -0.36 (0.08) -0.35 (0.08)
blackwhite -0.42 (0.10) -0.39 (0.09)
crisp -0.32 (0.09) -0.34 (0.10)
nougat -0.02 (0.07) -0.02 (0.07)
caramel -0.15 (0.08) -0.16 (0.07)
milkcreme -0.19 (0.07) -0.20 (0.07)
special -0.24 (0.07) -0.21 (0.07)
marzipan -0.26 (0.09) -0.27 (0.10)

Fruit (reference: none)
fruit -0.78 (0.13) -0.80 (0.14)
berry -0.29 (0.09) -0.29 (0.08)
grape -0.12 (0.07) -0.11 (0.07)

Nut (reference: none)
nut -0.13 (0.08) -0.13 (0.07)

Model
lnσ -0.73 (0.06) -0.72 (0.06)
ln γ -1.17 (0.08) -1.14 (0.09)
lnE 1.92 (0.06) 1.94 (0.07)
ln ξ -3.74 (0.21)

Standard deviations in parentheses; boldfaced parameters sig-
nify that the 95% posterior credible interval of the estimate
does not include zero

reported choice quantities of our respondents and (2) the ability to extrapolate market-

level demand. Like in most conjoint analysis studies, we do not have matched individual

purchase histories of our respondents, and therefore self-reported quantities are the best
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approximation of real-life behavior available. Market extrapolation rests on additional

assumptions: the number of potential buyers in the market and purchase frequency.

First, we will assess the ability of the models to predict self-reported demand quan-

tities. We generate demand predictions for all respondents given the ‘base case’ scenario

with 117 alternatives. We then compute the absolute error by subtracting the self-reported

demand quantity. Figure 8 shows distributions of absolute error for the proposed and com-

peting models. It is clear that the extant model is systematically biased, over-predicting

self-reported quantities.

Figure 8: Individual primary demand prediction error (Chocolate bars)
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In order to project marketplace demand, we need to make additional assumptions: The

number of households in Germany that regularly shop chocolate bars is around 25,000,000

(Statista, 2018a). Germans shop for chocolate almost every week, for an average of 3 shop-

ping trips per month during which they shop for chocolate bars. These are simplifying

assumptions, ignoring both purchase dynamics (e.g., stockpiling) and consumption dy-

namics (e.g., consumers eating more because ‘it is there’). Despite the assumptions, a

useful model should produce predictions that are at least close to real demand.

Extrapolated marketplace demand estimates (in tons of chocolate) are shown in Table

6. For reference, we add an extrapolation based on stated quantity. From aggregate

reports, we found that actual marketplace demand equals about 240,000t1. The extant

1The latest actual marketplace demand number we found is from 2016. We have not seen evidence
for dramatic changes in primary demand (Planung&Analyse, 2016).
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Table 6: Extrapolation: Annual chocolate bar demand (in kilotons)

Model E(demand) S(demand) CI-5% CI-95%

vd 434,730 9,989 419,298 450,810
vd-ss(1) 218,742 18,792 191,678 242,982
Based on stated quantity 215,422

Actual ∼240,000

model daramatically over-predict demand, while the proposed model produces a realistic

prediction.

While the focus of our investigation is primary demand, we also need to assess the

ability of our approach to produce reasonable predictions of secondary demand. Since

there are 117 products in our marketplace scenario, we aggregate demand to the brand-

name level and report expected purchase quantities and shares per occasion in Table 7.

While the proposed and extant model differ in terms of absolute quantity predictions,

market share predictions are similar. This is to be expected since the drivers of secondary

demand are also very similar between the models.

Table 7: Average demand by brand in units (Chocolate bars)

Volume Share

vd vd-ss(1) vd vd-ss(1)

Milka 1.47 0.71 0.30 0.29
Ritter 0.95 0.49 0.20 0.20
Alpia 0.64 0.31 0.13 0.13
Lindt 0.47 0.24 0.10 0.10
Schogetten 0.38 0.19 0.08 0.08
Tobler 0.23 0.12 0.05 0.05
Sarotti 0.22 0.12 0.05 0.05
Merci 0.11 0.06 0.02 0.03
Kinder 0.11 0.05 0.02 0.02
FerreroYogu 0.10 0.05 0.02 0.02
Nestle 0.07 0.04 0.01 0.01
Feodora 0.04 0.02 0.01 0.01
Trumpf 0.02 0.01 0.00 0.01
Suchard 0.02 0.01 0.00 0.00

We use a sales prediction task an additional test of external validity. Most manufac-
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turers do not disclose specific sales figures for chocolate bars. However, a preponderance

of Ritter Sport’s offerings are chocolate bar products, and most of their sales come from

traditional chocolate bars. The majority of their 100g bars are sold for around EUR 1.19

(regular) and EUR 0.99 (sale). Retail prices include a 19% value-added tax. Account-

ing for typical retail margins, we assume that one bar generates a revenue of 50 cents

for Ritter Sport. Based on these assumptions, we generate annual sales predictions (in

millions of Euros). Results are shown in Table 8. Ritter Sport’s published annual sales

number is EUR 480m globally (WirtschaftsWoche, 2018), where about half of its business

is domestic2. We expect an accurate sales prediction to be slightly lower than EUR 240m,

accounting for the small share of Ritter Sport products that are not standard chocolate

bars. The proposed model predict sales of around EUR 220m, which is in line with that

expectation. In contrast, volumetric demand models without the proposed adjustment

lead to sales predictions that are significantly too high.

Table 8: Domestic Annual Sales - Ritter Sport (in millions of Euros)

Model E(Sales) S(Sales) CI-5% CI-95%

vd 428,198 40,645 363,659 495,752
vd-ss(1) 221,398 33,589 167,129 275,976

Actual ∼240,000

3.2 Air fresheners

In our second application, we conducted a volumetric choice experiment in the air ‘NECA’

freshener category. These are simple non-electric air fresheners available in regular retail

stores. Respondents were recruited from a commercial panel in the United States. They

were shown 8, 16 and 24 choice alternatives for a total of 15 choice tasks. An example

choice task with 16 alternatives is shown in Figure 9.

In order to assess the ability to extrapolate demand to scenarios with more choice

2It was at 60% in 2013, but the global share has increased steadily since (Hahn, 2013).
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Figure 9: Air freshener example choice task - 16 alternatives

alternatives, we showed respondents an initial ‘shelf task’ with 57 choice alternatives. The

assortment of 57 alternatives closely resembles a typical offering in a store. Moreover, this

shelf task does not show an attribute grid, since it’s meant to best mimic a real-world

purchase decision in a store. The top portion of this task is depicted in Figure 10.

Figure 10: Air freshener validation shelf task

An overview of all attributes and levels is shown in Table 9. A brief glossary was pro-

vided to respondents. ‘Brand name’ and ‘Scent’ are straightforward attributes. ‘Delivery’
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Table 9: Attributes and Levels (Air fresheners)

Attribute Levels

Brand Citrus Magic, Glade, Arm & Hammer, California Scent, Febreze, Renuzit,
BrightAir

Scent Citrus, Gourmet, Fresh, Fruity, Lavender, Outdoor, Floral, Tropical
Spicy

Delivery Scent Swirl, Stand Holder, Candle, Fabric Flower, Diffusor, Spray,
Dispenser, Gelbeads, Sticks

Adsorption No, Yes

Table 10: Descriptive Statistics (Air fresheners)

Units Varieties $ spent Maximum
Number of per task per task per task spent

Alternatives mean sd mean sd mean sd mean sd

8 1.05 1.27 0.79 0.80 2.80 3.84 6.30 5.46
16 1.04 1.31 0.80 0.87 2.84 4.07 6.20 5.59
24 1.43 1.76 1.11 1.17 3.88 5.27 7.59 7.17

57 4.11 6.18 2.58 2.87 6.21 10.10 6.21 10.10

refers to the technique used to deliver the scent. While candles need to be lit to dispense

a scent, Gelbeads only need to be placed in a room. ‘Adsorbtion’ refers to the ability of

the product to remove unwanted smells from the air. While the actual process is called

adsorbtion, it is sometimes sold as ‘odor absorption’ to consumers.

3.2.1 Descriptive Analysis

Descriptive statistics of demand are summarized in Table 10. Summaries are broken

down by number of choice alternatives shown. Primary demand increases as the set

size is increased beyond 16 alternatives. This supports the general idea that consumers

respond to increased variety by increasing primary demand.

3.2.2 Model estimation and results

In-sample fit statistics for each of the models are shown in Table 11. The log marginal

density (LMD) improves when adding the set-size specification. While accounting for set
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size variation improves fit, adding a quadratic term does not appear to further improve

fit.

Table 11: In-sample fit (Air fresheners)

vd vd-ss(1) vd-ss(2)

LMD -32,529 -32,215 -32,233

Estimates of θ̄ are summarized in Table 12. Overall, we see consistency in the es-

timated ‘part-worth‘ coefficients, error scale, satiation rate parameter and budget con-

straint. The estimated intercept coefficient changes as we control for choice-set size.

3.2.3 Model validation

Respondents were shown a realistic shelf task with 57 choice alternatives. This task

was shown before respondents engaged with the choice experiments, in order to obtain

a realistic approximation of each respondents’ actual buying behavior. Table 13 shows

the predictive accuracy of the competing models. Models with set size adjustment again

outperform the extant model. Our proposed vd-ss(1) model produced the best in-sample

fit and is able to generate more accurate predictions, with relative bias close to 0.

For Table 14, we aggregated demand for the 57 products to the brand-name level to

facilitate comparisons. The proposed vd-ss(1) model predict overall demand of 2,196 units

from our 516 respondents. Actual demand in the shelf task was 2,120. The extant model

predicts a demand of 2,953 units, over-predicting demand by almost 40%.
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Table 12: Estimates (Air fresheners)

vd vd-ss(1) vd-ss(2)

β0 -5.87 (0.26) -3.85 (0.17) -2.00 (0.18)

Brand (reference: Citrus Magic)

Glade -0.28 (0.10) -0.26 (0.08) -0.27 (0.09)

ArmHammer -0.18 (0.09) -0.17 (0.08) -0.22 (0.08)

CaliforniaScent -0.50 (0.09) -0.45 (0.08) -0.48 (0.08)

Febreze -0.17 (0.09) -0.22 (0.08) -0.33 (0.09)

Renuzit -0.31 (0.08) -0.23 (0.08) -0.33 (0.09)

BrightAir -0.29 (0.08) -0.33 (0.08) -0.28 (0.08)

Delivery (reference: Scent swirls)

StandHolder -0.33 (0.08) -0.26 (0.08) -0.27 (0.07)

Candle -0.16 (0.09) -0.21 (0.07) -0.14 (0.07)

FabricFlower -0.13 (0.08) -0.11 (0.09) -0.13 (0.08)

Diffusor -0.32 (0.07) -0.24 (0.09) -0.24 (0.07)

Spray -0.21 (0.08) -0.18 (0.08) -0.23 (0.07)

Dispenser -0.11 (0.07) -0.02 (0.08) -0.02 (0.07)

Gelbeads -0.32 (0.08) -0.30 (0.07) -0.29 (0.08)

Sticks -0.33 (0.09) -0.34 (0.07) -0.26 (0.07)

Scent (reference: Citrus)

Gourmet -0.34 (0.09) -0.30 (0.08) -0.26 (0.08)

Fresh -0.30 (0.09) -0.08 (0.09) -0.11 (0.08)

Fruity -0.37 (0.09) -0.26 (0.08) -0.24 (0.08)

Lavender -0.61 (0.08) -0.36 (0.09) -0.43 (0.09)

Outdoor -0.39 (0.08) -0.24 (0.08) -0.23 (0.07)

Floral -0.38 (0.08) -0.19 (0.08) -0.25 (0.08)

Tropical -0.33 (0.08) -0.19 (0.08) -0.27 (0.08)

Spicy -0.32 (0.08) -0.18 (0.08) -0.14 (0.07)

Adsorbent type

yes -0.12 (0.06) -0.13 (0.05) -0.05 (0.05)

Model

lnσ 0.47 (0.03) 0.46 (0.03) 0.46 (0.03)

ln γ -0.31 (0.04) -0.32 (0.04) -0.32 (0.04)

lnE 2.31 (0.03) 2.31 (0.03) 2.32 (0.03)

ln ξ1 -0.80 (0.14) -6.01 (0.17)

ln ξ2 1.05 (0.11)

Standard deviations in parentheses; boldfaced parameters signify that
the 95% posterior credible interval of the estimate does not include
zero
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Table 13: Validation task fit (Air fresheners)

Model MSE MAE Bias

vd 1.19 0.17 0.03
vd-ss(1) 0.94 0.14 0.00
vd-ss(2) 0.94 0.14 0.00

Table 14: Brand-level demand predictions (Air fresheners)

Brand Actual vd vd-ss(1) vd-ss(2)

Renuzit 1, 137 1, 675 1, 256 1, 225
Glade 479 750 559 555
Febreze 311 245 177 174
BrightAir 63 39 28 29
CitrusMagic 51 105 77 77
ArmHammer 40 14 10 10
CaliforniaScent 39 126 88 89

Total 2, 120 2, 953 2, 196 2, 162

relative 139% 104% 102%
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4 Discussion

The following topics merit discussion: (1) implications for (volumetric) conjoint analysis,

(2) policy simulations involving significant set size variation, (3) implications for data

fusion, (4) implications for ‘marketplace predictions’ based on choice experiments and (5)

the relationship to the behavioral literature on choice-set size.

Volumetric conjoint analysis with set size variation is a great tool for policy simulations

that involve the addition or removal of several choice alternatives at the same time. In

two applications, we have demonstrated the ability of our approach to produce accurate

predictions while the extant model is prone to over-predictions (by 40%-80%). However,

drivers of secondary demand (see Table 5 and 12) and market share predictions (see

Table 7) seem largely unaffected by choice-set size variation. If predictions of demand

quantities are not required, discrete choice conjoint may be sufficient. However, if demand

quantities are important and significant changes to the number of offerings are considered,

introducing choice-set size variation into the choice experiment may be advisable.

Using our model, we are able to predict primary demand in response to changes

in set size. To illustrate that relationship, we use the vd-ss(1) from the chocolate bar

study. We sort choice alternatives from our marketplace scenario by predicted sales (in

EUR), and then predict primary demand for the best-selling 2....117 alternatives. The

resulting average category sales per respondent (in EUR) are shown in Figure 11. The

shaded ribbons show the 95% credibility intervals of the posterior distributions of expected

demand. The plot does not look ‘smooth‘ because we are removing choice alternatives

with varying baseline marginal utilities and prices.

Results from the proposed model suggest that adding choice alternatives beyond 30

products does not result in significant increases in primary demand. The competing

standard model predicts starkly increasing demand in the given range. If the number of

alternatives was further increased, the standard model would converge towards a boundary
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as a result of the budget constraint. At some point, our model may predict decreasing

primary demand. Retailers can use this model to optimize their assortment. Depending

on the costs to maintain a larger assortment, there might be little to gain from adding

more varities. In fact, stores might even be able to downsize their assortment by a few

alternatives. Previous studies have found similar effects – reducing assortments often does

not reduce sales, especially in the long run (e.g., Boatwright and Nunes, 2001).

Figure 11: Average category sales per customer and set size (Chocolate bars)
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The proposed set size adjustment is indispensable for data fusion with volumetric

choice experiments and demand data. Large differences in Nt will lead to poor fit for any

ξ > 0. For instance, Ellickson et al. (2019) combine conjoint and transaction data. While

they employ a discrete choice model, a volumetric version of their application would need

to incorporate a set size adjustment function. Allenby et al. (2019) find that the intercept

term β0 based on transaction data is much smaller than based on conjoint data from the

same subjects. In Section 2.2 we conjectured that set size differences would result in shifts

of β0. We believe that using our set size model would help to ‘fuse’ the choice experiment

with transaction data.
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The proposed model improves the ability of conjoint analysis as a tool for marketplace

simulation and prediction by improving predictions for choice sets of different dimensions.

Extrapolating from 18 to 100+ alternatives in our first study might appear like a huge

leap. However, it is common practice to use a simple choice experiment, and then predict

‘base case’ demand given a set of common offerings available in stores. While this is

straightforward for discrete choice models relying on the IIA, we have shown that vol-

umetric models make this a more difficult task because we are also modeling primary

demand. Our parsimonious model allows us to obtain realistic demand quantity predic-

tions. Both per-task predictions and market-level quantities are in line with reality, while

ignoring our proposed adjustment leads to predictions that are off by almost a factor of

two. In contrast to common industry practice, we are able to obtain surprisingly accu-

rate predictions of marketplace demand just from simulating demand for a market-like

scenario, without additional calibration. There are numerous other challenges for market-

place predictions based on choice experiments, including purchase timing, response biases

and competitive reactions. However, we are convinced that set size variation is one key

aspect to be considered.

We view our proposed model as complementary to previous behavioral studies of the

link between assortment size and demand. Most investigations on the topic are based

on discrete choices, and we encourage researchers to consider quantity demand models,

especially in packaged goods where consumers demand variety. One particular literature

stream focuses on instances when increases in assortment size lead to lower purchase

probabilities. This effect is sometimes referred to as ‘choice overload’ (Chernev et al.,

2015). There are various explanations for the effect, including search costs (Kuksov and

Villas-Boas, 2010), differences in motivation (Iyengar and Lepper, 2000), heightened ex-

pectations in larger choice sets (Diehl and Poynor, 2010), deferral of choice or increased

appeal of choosing the outside option (Dhar, 1997). Based on the antecedents (complexity,

difficulty, uncertainty, decision goal) of choice overload described by Chernev et al. (2015),
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we do not believe that the effect plays a major role in the chocolate bar application. More-

over, our model would allow to describe a ‘choice overload’ situation, since there are not

additional constraints on f (Nt; ξ). Our model suggests that German chocolate buyers are

unlikely to experience choice overload in a typical assortment. The number of alternatives

would have to be increased much more to see an inverse U-shaped relationship. In our

air freshener study, we asked respondents to evaluate their level of satisfaction with their

choice given after choosing from 8, 16 and 24 alternatives. Unlike Feinberg et al. (2016),

we do not find that respondents are less satisfied given larger set sizes. Figure 12 shows

boxplots of standardized satisfaction ratings (5-point ratings, mean-centered, divided by

standard deviation) by set size, where no such relationship can be found.

Figure 12: Standardized satisfaction with choice by set size (Air fresheners)
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5 Concluding Remarks

This paper proposes a volumetric demand model that accounts for choice-set size variation.

It extends the multiple discrete-continous approach by allowing for a relationship between

choice-set size and the utility of the outside good. We demonstrate that the proposed

model fits volumetric demand data with set size variation better than previous models.

Our findings suggest that policy simulations that involve varying choice-set sizes should

be informed by data that also contains set size variation and a corresponding model.
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Ignoring set size variation can lead to significant over-prediction of the demand effect of

assortment increases.

This paper not only adds to the established literature on multiple discrete-continous

demand models, but it also connects choice models with empirical and behavioral findings

on choice-set size. Our model is able to explain an inverted-U-shaped relationship between

the number of choice alternatives and primary demand. It turns the relationship into an

empirical question. Even though we do not observe ‘choice overload’, our proposed model

would be able to describe it.

The proposed model has implications for conjoint analysis, data fusion and modeling

transaction data. All of these applications can involve significant variation in choice-set

size. Transaction data can include assortment changes over time, or varying assortment

sizes in different stores. Data fusion involving choice experiments and transaction data is

likely to involve dramatically different set sizes.

The model also has implications for assortment optimization, which is typically based

on discrete choice models (Kök et al., 2015). It is relevant for retailers, who need to manage

costs of larger assortments and competition from wholesale clubs with limited assortments.

It is also important for manufacturers who need to decide how many different varieties

to offer in a product line. While the focus of this paper is on packaged goods, the model

can also be applied to other categories where simultaneous demand for multiple varieties

is common, including entertainment products and services or apparel.

Our paper has implications for conjoint analysis. If researchers are only interested in

market shares, discrete choice conjoint may be sufficient. If the goal is to understand and

predict demand quantities, it may be necessary to introduce choice-set size variation into

the study. Deciding on the range and number of set sizes to use is an additional challenge,

and respondent feedback should be collected to make sure that tasks remain manageable.

Careful model validation is important for new proposed demand models, however,

many choice modeling papers rely on hold-out choice tasks for validation. We used two
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validation methods that are a stricter test of validity. In one study we predict demand

for a marketplace scenario and compare with aggregate demand data. In the other study

we use a virtual shelf task for validation.

We recognize some limitations of our study: We apply our proposed model to two

choice experiments. Applying the model to transaction data or a combination of trans-

action and choice experiment data could provide further evidence for the validity of the

model. Transaction data would also allow studying stockpiling and purchase timing. Con-

trolling for set size variation might have implications for stockpiling models. We expect

respondents to answer randomly at worst, and therefore see no need for ‘incentive align-

ment’ (Ding et al., 2005; Yang et al., 2018). Moreover, commercial panel providers do not

allow implementing it.

There are many avenues for future research involving set size variation. Possible

model extensions might include consideration set formation (Huang and Bronnenberg,

2018), volume discounts (Howell et al., 2016) or other extensions of volumetric demand

models. Additional work could focus on combining purchase timing and stockpiling (Mela

et al., 1998) with a model of set size variation. There would also be opportunities to apply

volumetric conjoint experiments as part of behavioral research on choice set size in order

to shed further light on the underlying processes. Finally, more work is needed to provide

design recommendations for choice experiments that involve set size variation.
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Appendix

A Demand prediction

Obtaining demand estimates given realizations of the error term is straightforward. In-

stead of using numerical optimization, we use a recursive algorithm requiring ≤ K itera-

tions to find the utility-maximizing demand conditional on ε and θ. The algorithm makes

it feasible to numerically integrate out ε, θh and τ . It can be applied when the utility

derived from the outside good is non-linear, allowing to first find the optimal amount of

the outside good z and then computing the corresponding inside good quantities xk.

In order to apply the algorithm, we first define

ρi =
pi
ψiγ

for 1 ≤ i ≤ K (26)

ρ0 = 0 (27)

ρK+1 =∞ (28)

and order the values ρi in ascending order so that ρi ≤ ρi+1 for 1 ≤ i ≤ K. Then z > ρk

implies z > ρi for i ≤ k. At the optimum, xi > 0 for 1 ≤ k ≤ K, xi = 0 for k < i ≤ K

and ρk < z < ρk+1. For non-considered alternatives in the screening rule model, we set

the corresponding ρk = 0.

Taking the derivative of Equation 1 with respect to xk yields the following optimal

quantities for xk > 0:

xk =
ψkz

pk
− 1

γ
(29)

From equation 29 and z = E −
∑

k xk, it follows that

z =
γE +

∑
k pk

γ +
∑

k ψk
(30)

We can find the optimal z by following the algorithm:
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1. a ←− γE, b ←− γ, k ←− 0

2. z ←− a/b

3. while z ≤ ρk or z > ρk+1:

(a) k ←− k + 1

(b) a ←− a+ ρk

(c) b ←− b+ ψk

(d) z ←− a/b

Once the algorithm terminates, we can insert the optimal z quantity into equation 29

to compute the optimal inside good quantities xk. Applying this algorithm to the set size

model is straightforward – we only need to re-specify ψj:

ψj = exp (ajβ + εj − ln (f(Nt, ξ)) (31)

The error term ε can only be integrated out numerically by simulating from its distribu-

tion.
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Chernev, Alexander, Ulf Böckenholt, Joseph Goodman. 2015. Choice overload: A con-

ceptual review and meta-analysis. Journal of Consumer Psychology 25(2) 333–358.

Dhar, Ravi. 1997. Consumer preference for a no-choice option. Journal of Consumer

Research 24(2) 215–231.

Diehl, Kristin, Cait Poynor. 2010. Great expectations?! assortment size, expectations,

and satisfaction. Journal of Marketing Research 47(2) 312–322.

43



Ding, Min, Rajdeep Grewal, John Liechty. 2005. Incentive-aligned conjoint analysis.

Journal of Marketing Research 42(1) 67–82.

Dotson, Jeffrey P., John R. Howell, Jeff D. Brazell, Thomas Otter, Peter J. Lenk, Steve

MacEachern, Greg M. Allenby. 2018. A probit model with structured covariance for

similarity effects and source of volume calculations. Journal of Marketing Research

55(1) 35–47.
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